January 1989 B > UILU-ENG-89-2210
CSG-99

WAS 1- 6o 2
COORDINATED SCIENCE LABORATORY

College of Engineering W

IMPACT OF 75
DEVICE LEVEL

FAULTS IN

A DIGITAL o
AVIONIC)
PROCESSOR

Suk Ho Kim

(MASA-CR-184783) IMPACTI CF LCEVICE LEVEL NB8I9-1ECU6
FAULTIS IM A L1GITRAL AVICNIC EECCESSCR
(11liscis Univ.) 55 cscL 09B
Unclas
G3,60 0190167

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIE _
URITY CLASSIFICATI HIS PA

REPORT DOCUMENTATION PAGE

“
Ta. REPORT SECURITY CLASSIFICATION
Unclassified

e ————— " ——
1b. RESTRICTIVE MARKINGS
None '

e e v~y T Ry
2a. SECURITY CLASSIFICATION AUTHORITY

s
3. DISTRIBUTION/ AVAILABILITY OF REPORT

0t O
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-89-2210 (CsG-99)

5. MONITORING QRGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(if applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
NASA

6¢c. ADDRESS (Cty, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)
NASA Ames -~ Research Cen'ter
Moffett Field, CA 94035

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION
NASA

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢c. ADDRESS (City, State, and ZIP Code)
(see 7b.)

NASA: NAG 1-602

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Impact of Device Level Faults in a Digital Avionic Processor

12. PERSONAL AUTHOR(S)

Suk Ho Kim
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Technical FROM TO December 1988 52
 —————————— — e

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
fault injection, fault propagation, device level fault,
mixed mode simulation, Mean Error Durations, Mean Time
Between Errors, near—coincident errors.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This study describes an experimental analysis of the impact of gate and device-level faults in the
processor of a Bendix BDX-930, flight control system. Via mixed mode simulation, faults were
injected both at the gate (stuck-at) and at the transistor levels and, their propagation through the chip to
the output pins was measured. The results show that there is little correspondence between a stuck-at

and a device-level fault model, as far as error activity or detection within a functional unit is concemned.

(continued on reverse)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

EIunCLASSIFIEDAUNLIMITED [SAME As RPT. [DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

B e R

223. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, saMar

CRIGINAL FAET 1T
OF POOR QUnuil¥

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED .
M
SECURITY CLASSIFICATION OF THIS PAGE

In so far as error activity outside the injected unit and at the output pins are concerned, the stuck-at and
device models track each other. The stuck-at modél. however, overestimates, by over one hundred
percent, the probability of fault propagation to the output pins. An evaluation of the Mean Error
Durations and the Mean Time Between Errors at the output pins shows that the stuck-at model
significantly underestimates (by 62%) the impact of an intemal chip fault on the output pins. Finally,

the study also quantifies the impact of device fault by location, both internally and at the output pins.

- B BB B BBE BeE BEE Bas Bue mma mms mms mal aam S BEE PR B

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

IMPACT OF DEVICE LEVEL FAULTS
IN A DIGITAL AVIONIC PROCESSOR

BY
SUK HO KIM

B.S., University of Illinois, 1986

THESIS

Submitted in partial fulfiliment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

Acknowledgment: This research was supported by the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-602.

jii
ABSTRACT

This study describes an experimental analysis of the impact of gate and device-level faults in the
processor of a Bendix BDX-930, flight control system. Via mixed mode simulation, faults were
injected both at the gate (stuck-at) and at the transistor levels and, their propagation through the chip to
the output pins was measured. The results show that there is little correspondence between a stuck-at
and a device-level fault model, as far as error activity or detection within a functional unit is concemned.
In so far as error activity outside the injected unit and at the output pins are concerned, the stuck-at and
device models track each other. The stuck-at model, however, overestimates, by over one hundred
percent, the probability of fault propagation to the output pins. An evaluation of the Mean Error
Durations and the Mean Time Between Errors at the output pins shows that the stuck-at model
significantly underestimates (by-62%) the impact of an internal chip fault on the output pins. Finally,

the study also quantifies the impact of device fault by location, both internally and at the output pins.

iv
ACKNOWLEDGMENTS

I wish to thank my advisor, Professor Ravi Iyer, for his guidance and encouragement. His support
will always be appreciated. I also thank the researchers at the NASA Langley Research Center
(AIRLAB), for many useful discussions. In particular I thank Bemice Becker for providing insight into
the BDX-930 simulator. Thanks are also due to G. Choi, J. Singh, R. Llames, Luke Young and Jenny

Marcinkiewic for their careful reading of an early draft of this thesis.

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION

1.1. Related Research

2. THE EXPERIMENT

2.1. Mixed-Mode Simulation

2.2. Fault Injection

3. MEASUREMENTS

3.1. Data Collection

. COMPARISON OF PHYSICAL AND STUCK-AT FAULT INJECTIONS

5. EFFECT OF FAULT PLACEMENT

5.1. Comparison of Fault Distributions of Different Material Failures

6. CHARACTERIZATION OF ERRORS ON OUTPUT PINS

6.1. Probability of Pin Errors

6.2. Mean Time Between Errors (MTBE) and Mean Error Durations (MED)e....

6.3. Near-Coincident Errors

7. INSTRUCTION/MICROINSTRUCTION ANALYSIS

8. CONCLUSIONS

APPENDIX A. COMPARISONS BETWEEN STUCK-AT AND DEVICE

A.l. Comparison of Percentage of Fault Detected

A.2. Comparison of Percentage of Faults Detected at Output Pins

A.3. Comparison of Propagation Factor at Output Pins

APPENDIX B. INSTRUCTION/MICROINSTRUCTION COMPARISONScoeerrerecrcreeces

R G0 Om n D G a0 N 0 BN G N Gy &y an B aE =EEm e
H»

11

18

21

25

26

29

33

37

39

39

40

41

42

- B.1. Comparison of Gate Activity

B.2. Comparison of Error Probability based on Instruction/microinstruction

REFERENCES

....................

42

43

LIST OF TABLES

TABLE 1: Number of Gates and Transistors in AMD 2901

TABLE 2: Sample of Error File

TABLE 3: The Propagation Factors

TABLE 4: MTBE and MED for Stuck-at and Device Faults

TABLE 5: Probability of Units Affected

TABLE 6: The Effect of Fault in Oxide and Metal

TABLE 7: Pins of AMD 2901

TABLE 8: Probability of Pin Errors

TABLE 9: Mean Time Between Emrors

TABLE 10: Mean Error Durations

TABLE 11: Probability of Fault Detection for Instruction Executed

TABLE 12: Probability of Fault Detection for Microinstruction

TABLE A.l: The Propagation Factors to Output Pins

TABLE B.1: Comparison of Error Probability for Instructions

TABLE B.2: Comparison of Error Probability for Microinstructions

vii

15

16

20

23

24

26

27

28

35

36

41

43

43

LIST OF FIGURES

Figure 1: Percentages of Faults Detected That Remained in the Unit

Figure 2: Comparison of Fault Propagation Going Outside of the Unit

.....

Figure 3: Activity Comparisons Between Materials

Figure 4: Mean Number of Coincident Errors

Figure 5: Probability of Near-Coincident Errors

Figure 6: Gate Activity for Device Level Fault

Figure A.1: Comparison of Percentages of Faults Detected

Figure A.2: Comparison of Percentages of Faults Detected at Output Pins

Figure B.1: Comparison between Device and Gate Level Faults

viii

12

14

22

30

32

39

42

CHAPTER 1

INTRODUCTION

A study of fault propagation and its impact is important for effective design of reliable and fault
tolerant systems. Such a st.udy, however, is difficult because the mechanisms involved are complex and
hence not easily amenable to analytical modeling. In these circumstances an experimental study can not
only provide valuable insight into the issues of fault occurrence and propagation, but also help develop a

structured basis for future analytical analysis.

This thesis describes an experimental analysis of fault propagation and fault sensitivity in the pro-
cessor of a Bendix BDX-930, flight control system. The processor was simulated using an event-driven,
gate-level logic simulator, developed at NASA Langley Research Center, interfaced with a device-level
circuit simulator (SPICE) [1]. Via mixed-mode simulation faults were injected both at the gate (stuck-at)
and at the transistor levels, and their propagation through the chip to the output pins was measured. The
nature and extent of the dependency of fault propagation on the type of instruction/microinstruction exe-

cuted were also measured.

The results showed that, for device-level faults, in 5.1% of the cases, errors were detected within
the injected unit, and in 20.9% of the cases errors were detected outside the unit (including 12.7% at the ‘
output pins); 74% remained undetected. For the stuck-at model, in 1.5% of the cases, errors were
detected within the injected unit, in 41.8% of the cases errors were detected outside the unit (26.9% at the
output pins); 56.7% remained undetected. The results also showed that there was little correspondence
between a stuck-at and a device-level fault model in so far as error activity or detection within a func-
tional unit is concerned. As far as error activity outside the injected unit and at the output pins are con-
cerned, the stuck-at and device models tracked each other, although the stuck-at model overestimated, by

over one hundred percent, the probability of fault propagation to the output pins. An evaluation of the

Mean Error Durations and the Mean Time Between Error at the output pins showed that the stuck-at

model will significantly underestimate (by 62%) the impact of an intemnal chip fault on the output pins.

Measurement of error activity at the output pins showed that faults in different functional units
affect the output pins to varying degrees, and that each unit had a distinct probability of affecting the out-
put pins. This result suggests that by injecting pin errors with the measured probabilities we can easily

emulate with-in chip faults for integrated system testing.

Chapters 2 and 3 contain a detailed description of the experimental procedure and measurements.
Chapters 4, 5, 6, and 7 show the experimental resuits and their analysis. Chapier 4 compares the results
from the gate-level and the device-level simulations. In chapter 5, the effect of fault placement in the
AMD 2901 chip is defined and quantified. Chapter 6 shows the error characteristics at output pins for
device-level faults. Chapter 7 describes the analysis of fault propagation according to instructions and
microinstructions executed at the gate-levei fault and the device-level fault. The final chapter highlights

the important results and makes suggestions for future research.

1.1. Related Research

In recent years, there has been considerable research in the area of error and failure analysis of
computer systems. In [2,3,4], automatically collected error data from several general-purpose computers
are analyzed. By analyzing jointly, the performance and error data on several machines, valuable insight
into error manifestation and discovery in large systems is provided. A series of experiments focusing on
error analysis through fault insertion was conducted by several investigators at the NASA AIRLAB test-
bed facility. A summary of these experiments is given in [S]. In [6,7,8], the evaluation and modeling of
fault latency in digital avionic systems is investigated by determining the degree of fault latency in a
redundant flight control system. In {9, 101, further experiments to study fault and error latency distribu-

tions under varying workload conditions are discussed.

A detailed simulation experiment to study error propagation within a chip is discussed in [11]. The

study develops a systematic experimental methodology to quantify error propagation via gate level

CHAPTER 1

INTRODUCTION

A study of fault propagation and its impact is important for effective design of reliable and fault
tolerant systems. Such a stﬁdy, however, is difficult because the mechanisms involved are complex and
hence not easily amenable to analytical modeling. In these circumstances an experimental study can not
only provide valuable insight into the issues of fault occurrence and propagation, but also help develop a

structured basis for future analytical analysis.

This thesis describes an experimental analysis of fault propagation and fault sensitivity in the pro-
cessor of a Bendix BDX-930, flight control system. The processor was simulated using an event-driven,
gate-level logic simulator, developed at NASA Langley Research Center, interfaced with a device-level
circuit simulator (SPICE) [1]. Via mixed-mode simulation faults were injected both at the gate (stuck-at)
and at the transistor levels, and their propagation through the chip to the output pins was measured. The
nature and extent of the dependency of fault propagation on the type of instruction/microinstruction exe-

cuted were also measured.

The results showed that, for device-level faults, in 5.1% of the cases, errors were detected within
the injected unit, and in 20.9% of the cases errors were detected outside the unit (including 12.7% at the
output pins); 74% remained undetected. For the stuck-at model, in 1.5% of the cases, errors were
detected within the injected unit, in 41.8% of the cases errors were detected outside the unit (26.9% at the
output pins); 56.7% remained undetected. The results also showed that there was little correspondence
between a stuck-at and a device-level fauit model in so far as error activity or detection within a func-
tional unit is concerned. As far as error activity outside the injected unit and at the output pins are con-
cerned, the stuck-at and device models tracked each other, although the stuck-at model overestimated, by

over one hundred percent, the probability of fault propagation to the output pins. An evaluation of the

simulation. To characterize the error propagation within the chip, distributions of error activity within the
chip and at the output pins are generated. Based on these distributions, measures of error propagation and
severity are defined. The analysis quantifies the dependency of the ‘measured error propagation on the
location of the fault. The study also shows the nature and extent of the dependency of error propagation

upon the type of microinstruction and assembly level instruction executed.

Our experience with large circuits has shown that there are only certain sections or paths that
require simulation with the highest level of detail, while the simulation accuracy for the rest of the circuit
is less critical. To optimize the cost-accuracy tradeoff, one should be able to specify the level of detail
required by selecting the simulation mode for each module. The current effort based on mixed-mode
simulation is initiated to meet this need. To date, there has been no research to investigate fault propaga-
tion from the device to the pin level. This information i; crucial for flight-critical digital systems, and

additionally would allow the determination of the effect of placement on fault propagation.

CHAPTER 2

THE EXPERIMENT

The system targeted for this study is the CPU in the Bendix BDX-930, which is a digital avionic
miniprocessor. The BDX-930 is used in a number of flight control avionic systems, e.g., in SIP'I‘ [12],
and in AFTI F-16 [6]. Fault tolerance is achieved by replication of the processing and voting in software.
The BDX-930 consists of 86 microcircuits printed on one circuit board [13]). The processor is designed

around the AMD 2901 four-bit microprocessor slice [6]. In our experiments, the processor was simulated

using an event-driven, gate-level logic simulator (developed at NASA Langley) interfaced with a device-
level circuit simulator (SPICE). Since the-AMD 2901 is the most complex chip in the BDX-930, it was
used for fault injection and error data collection. In the simulations, fault propagation data were collected
at device and gate levels as well as at the output pins. From the data provided by simulations, issues

relating to fault propagation and fault sensitivity of the chip architecture were addressed.

2.1. Mixed Mode Simulation

The simulator [14], designed at NASA AIRLAB, is an experimental tool to simulate fault and relia-
bility checking for Bendix BDX-930. This simulator is an event-driven, gate-level, unit delay logic simu-
lator, and includes the CPU with its instruction set, the memory, and sections of the program memory
containing six application programs and a self-test program. The simulation model is based on the circuit
schematic of the AMD2901 and includes all of the devices identified in those schematics. Each device is
represented by a gate-level equivalent circuit supplied by the chip manufacturer. Six gate types are used
to represent devices, i.e., NAND, AND, OR, NOT, NOR, Exclusive OR. Unit delay is assumed between

logic gates.

Although this simulator was quite accurate for gate-level simulation, it could not simulate faults
occurring at the transistor level. By interfacing the gate-level simulation with a circuit-level simulator,
SPICE2 [1}, a method that permitted the injection of transistor level fault and the observation of fault pro-
pagation at the gate or module level was implemented. Thus, by using a combination of circuit and
gate-level simulation, we could achieve the accuracy of circuit-level fault injection and the speed of gate-

level simulations.

An important issue in any mixed-mode simulation is accurate analog-to-digital signal conversion.
In our simulator, once the gate in which the fault is going to be injected is chosen, the SPICE simulator
runs only for the faulty gate according to the fault model inside the gate. The SPICE generates an analog
output which ranges from zero to five volts. Because logic values (one or zero) are required for the gate-
level simulator, a subroutine is needed to convert the analog voltages to logic values. In order to get
proper logic values, tl.1e analog voltages are sampled and averaged in the scanning window through the
time axis. The averaged voltages are evaluated by assuming higher than 4.2 volts‘ as a logic one and
lower than 0.8 volt as a logic zero to détermine the comresponding logic values. After acquiring the

values from the SPICE run, the rest of the simulation occurs at the gate-level.

2.2. Fault Injection

Based on previously published results [15], physical failures may generally be divided into two
categories, device failures and interconnection failures. In this study we consider only device failures. In
[16], it is reported that of the device faults the most likely are oxide level faults and metal faults. Typi-
cally, according to [16], 68% are oxide faults and the remaining 32% are metal faults. We used these

percentages for determining the types of fault to inject in the simulations.

Two-hundred forty-five gates corresponding to a Bendix circuit diagram for the AMD 2901 were

selected for fault injection. In order to have consistent statistical results, 700 device faults and 300 gate-

level faults were injected. The target gates were randomly selected! among the twelve functional units of

the AMD 2901 except for the Q Register. The Q register was excluded to avoid effects of the fault
latency which have been studied elsewhere [6,8]. The units into which faults were injected were RAM
Shift, Q Shift, Multiplexor, Arithmetic Logic Unit, Ram Control, Output, Output Data Select Unit, Desti-
nation Control, ALU Control, and Source Control. Table 1 shows the number of gates and transistors in

these units.

TABLE 1: Number of Gates and Transistors in AMD 2901

SECNUM | SEC NAME | NUM OF GATE | NUM OF TRANS
1 Q Register 0 0
2 Ram 12 64
3 Q Shift 16 100
4 Source Contl 4 8
5 ALU Control 6 24
6 Qutput 6 38
7 Qutput Select 9 50
8 Ram Shift 16 : 100
9 Ram Control 83 572

10 Dest Control 10 36
11 ALU 51 326
12 MUX 32 224

'While sequential injection such as used in [11] is exhaustive, it is not practical in modeling the behavior of physical faults
since the numbers can be very large.

CHAPTER 3

MEASUREMENTS

The simulator and the fault injection facility programs were written in Fortran 77 and in
VAX/VMS system language (Digital Command Language) [17]. Based on the random fault injections, a
total of 700 device-level and 300 stuck-at fault simulations were performed to obtain experimental data

on the fault propagation characteristics. Each simulation corresponded to executing the sequences of

microinstructions of a CPU-test program?®. First, a "gold" or unfaulted simulation run was performed.
Next, one-thousand simulation runs, each containing an injected fault, were performed. For each faulted
simulation, a comparison was made with the gold simulation to generate the error data for subsequent
fault propagation at;alysis. An error was defined as follows:

1) A gate activated in the gold simulation but not activated in the faulted simulation.

2) A gate activated in the faulted simulation but not activated in the gold simulation.

3) A gate activated in both simulations for the same time slice but with different logic values.
The results of these measurements enabled us to analyze the dependency of the error propagation

on the location of the fault and the type of instruction/microinstruction ¢xccuted and to characterize the

crror activity at the output pins.

3.1. Data Collection

After cach simulation run and prior to the next run, the output consisting of time stamps, a trace of
gate activity and logic values was appended to the existing output file. The output file created by cach
run was then compared with fault-free data from the gold simulation to gencrate an "Error Data File."

Table 2 shows a sample of an Egror Data File. To provide dcuailed information to the data sct, many

*There are four individual subscts within the self-test program, i.c., the cyclic RAM test, the CPU test, the ALU test, and the
memory address processor test.

independent variables were included in the raw data as shown in the table. The first column indicates the
simulation number.- Columns 2, 3 and 4 show the gate name, the unit name and the unit type where the
fault injections were made respectively. Column 5 specifies the gate type into which the fault was
injected. The type of the injected faults is shown in columns 6 and 7. For example, in simulation 1, a
fault corresponding to an oxide breakdown was injected at device-level. Column 8 shows whether or not
an error was detected in that simulation run. Column 9 shows the time slice during which an error result-
ing from the injected fault was detected. The remaining columns show the number of gates affected by
the injected fault in each unit (for brevity, not all the units are shown in the table). For example, in simu-
lation 5, at time 887, eight gates in the RAM, one gate in the Q-Shift and four gates in the MUX were

affected due to the fauit in the gate GAMULT6CPU32.

To identify the fault propagation through the chip as well as the output pins, information about
time, number of faults and name of affected unit during the propagation were traced from the fault injec-
tion point to all other units in the chip and output pins. These measurements were used for determining
the percentage of the faults which propagated out of the unit and the percentage of the other units affected

given that the fault did propagate out of the unit.

Because study of fault distribution to the output pins is of great practical significance, obtaining
precise output data from the simulation was crucial for analyzing and evaluating a sysicm at the output
pin level. The output pin data were collected in order to observe how cach pin behaved in the event of a
fault condition in the system. In particular, simultancous occurrcnces of errors and the probability of
near-coincidence of pin errors were investigated. Also, these data were used lo characterize cach pin

based on the mcan time between crrors and mcean error durations.

8 3 8 0 968 I opixQ | @0mag | puy | 1onuo) | TIND VY | Z€DINdDVLTINNYD 3
8 € 8 0 $68 1 opixQ | eomog { puy | onuo) | TIND VY | TEDINDIOLTINNYD S
8 € 8 0 68 1 opixQ | oomag | puy | [onwo) | TINDIWVY | T€DINAI9LTINNVD S
3 3 8 " £68 1 apixQ | 9omog | puy | onuo) | IIND VY | ZEDINAI9LINNVYD S
8 4 8 0 768 1 OpIXQ | 991A0Q | PuY | [onuo) | “LINDWVY | Z€DINdI9LININYD s
8 z 8 0 168 1 opixQ | 2o1dq { puy | jomuo) | TIND VY | TEDINADOLTINWYD | ¢
8 (/ 8 0 068 1 opixQ | 9010q | puy | [onuo) | TIND VY | TEDINDDOLININYD s
8 rA 8 0 688 1 apixQ | 2omog | puy | fonuo) | LLND VY | T€DINDIILTINWYO S
8 r4 8 0 888 | opixQ | 9010q | puy | jonuo) | LINDWVY | TEDINIDOLTININYD S
4 i 8 0 LS8 1 opixQ | 2910 | puy | [onuo) | TIND VY | T€DINdD9LTNIAYD S
0 1 8 0 86€ 1 appIXQ | 990Q | puy | Jonuo) | TTLND VY | Z€DINII9LTININYD S
0 0 v 0 L6E | apixQ | 9omoq | puy | [onuo) | TIND VY | Z€DIND9LININYD S
0 0 0 0 96€ 1 opIxQ | 991A0@ | puy | [onuo) | TILND WVY | TEDINADYLINWYD S
0 0 0 0 - 0 e | somog | puy | [onuwo) | TIND WYY T£2INdO01ALVD v
0 0 0 0 - 0 opixQ | 9o1aq | J0xN 21807 niv 7€2INdD190¥D £
0 0 0 0 - 0 opixQ | 9moq | puy | onuo) | TLND NV TEDINdDLALYD <
0 0 0 0 - 0 opIxQ | 90q 10 Lowap VY EOINdD11VD I
XNW | LJHSO | WvYd | o340 TdAL | 1dAL | 3dAL | 3dAL FINVN WNN
o . N o TALL | wod¥d | oo | i | agve | oas 195 JNVN ILVD ‘WIS
6 8 L 9 S 4 £ A l

a1 we(Jouq jo odwes 7 F14V.L

10

Information concerning the instruction and microcode activity was collected concurrently with the
gate activity data. By knowing which microaddress had been accessed, the executed microinstruction was
uniquely identified. Finally, by examining the sequence of microinstructions, the macro (or assembly)

level instruction that was executed was determined.

11

CHAPTER 4

COMPARISON OF PHYSICAL AND STUCK-AT FAULT INJECTIONS

With the increasing complexity of VLSI circuits, there is a growing concern that fault simulation
based on stuck-at faults is not adequate. In this section, the similarities and differences between the
results of gate-level fault injections and device-level fault injections are discussed. The comparisons are
based on the measured error activity resulting from gate-level and device-level fault injections into the

same functional unit.

Four different types of comparisons are made. The first comparison is based on the detectability of
the injected faults inside the injected units. The second is based on the percentages of faults that were
detected outside the injected unit (i.e., the measured fault propagation). The third comparison is based on
the extent of error activity outside the injected unit. Finally, the pin-level error activity resulting from

gate and device-level fault injections are compared.

Figure 1 shows the percentages of injected faults detected within the inje;cted unit. Percentages for
both stuck-at and device-level fault injections are shown. The vertical axis indicates the location of the
fault, and the horizontal axis indicates the percentage of the injected faults detected within the unit. A
number of observauons can be made from this figure. First, device faults have higher percentages of
being detected within the unit as compared to gate-level faults. This is reasonable because there are
fewer levels of signal transitions at the gate-level than at the device-level. For example, a given device-
level fault may propagate through 25 transistors before getting outside the unit while a gate-level fault
may only have two or three logic levels to go through. In comparing the relative behavior of stuck-at and
device-level faults across the functional units in Figure 1, we see that they do not track each other. Thus,

the results show that there is little correspondence between the behaviors of device and stuck-at faults.

RAM

Q SHIFT

S CONT
ALU CONT

OUTPUT

OUT SEL
RAM SHIFT
RAM CONT
DES CONT

ALY

MUX

12
71
5.1
3.3
7
3.3
38
2 Stuck-At
58 B Dev
6
48
741
3.1
. ' ' _ ' .
5 15 20 25 30

Figure 1: Pcrceniagcs of Faults Detected That Remained in the Unit

13

Figure 2 shows a comparison of the percentages of faults detected outside of the injected unit, for
stuck-at and device faults. Again, the vertical axis indicates the location of the fault, and the horizontal
axis is the percentage. The figure shows that although the stuck-at and the device-level fault behaviors
track each other, their percentages are quite different. On the average, the stuck-at faults tend to pro-
pagate appmxhn;xwly twice as frequently outside the unit as compared to device faults. Thus, by assum-
ing a stuck-at fault model, although the relative impact of a fault on other units reasonably may reflect the

physical failures, the results are likely to be considerably pessimistic.

In the above-mentioned case, we were concerned with whether or not error activity due to a fault is
detected outside of the unit in which a fault is injected. The next comparison is based on the "extent” of
measured error activity outside the injected unit. For example, if a fault injected in the ALU unit is
detected in four other functional units, the impact of the fault may be quadrupled due to propagation. To
quantify this effect, a ﬁew measure "the propagation factor” is defined. The propagation factor is defined
as the average number of external functional units affected due to the fault in a specified functional unit.
This factor can be calculated by dividing the sum of error activity outside the injected unit by the meas-
ured error activity inside the injected unit. Table 3 shows the propagation factors for the stuck-at and the

device-level fault injections in each unit.

14

t
RAM 53.2
Q SHIFT 1511
S cont 72277 52.5)
ALU CONT 272272 115:3.5
OUTPUT 10.2
OUT SEL 9.1
d STUCK-AT
RAM SHIFT 16.1 DEVICE
RAM CONT //////8////// 7777777 85.6
DES CONT %%%/;;;////////////f P2 Z77773 58.9
ALY ;//};////;//};;;;;;///////////////// 54,
MUX 272774 49.3
L v Y Y T v Y v 1
0 20 40 60 80 100

Figure 2: Comparison of Fault Propagation Going Outside of the Unit

15

TABLE 3: The Propagation Factors

Faulted Pro.Factor | Pro.Factor

Unit for Stuck-at | for Device
RAM 6.6 7.9
Q SHFT 3.0 54
S CONT 8.3 6.8
ALU CON 84 7.3
OUTPUT 0.5) 2.0
OUT SEL 10.0 10.0
RAM SHFT 34 7.0
RAM CONT 29 5.0
DES CONT 7.7 7.5
ALU 6.0 6.1
MUX 6.4 6.8

In Table 3, the ﬁrst column shows the units in which the fault injections were made. The next two
columns are the propagation factors for stuck-at faults and device faults, respectively. Here again there is
no clear correlation across all units between device and stuck-at faults. There is also a higher variability
(2.92 vs. 2.01) in fault propagation with stuck-at faults. An examination of the table shows that for most
of the units (except the microinstruction decode units which are the Source Control, the ALU Control,

and the Destination Control) the stuck-at faults had a smaller propagation factor than device faults, i.e.,

functional units are more sensitive to the device faults than to the stuck-at faults. The only exceptions are

the faults in the microinstruction decode unit which have the opposite effect.

Finally, the impact of gate and device-level faults on the output pins was compared. A comparison
of the percentages of faults which affected the pins (similar to Fig. 2) and the propagation factors (similar
to Table 3) showed that the stuck-at and the device faults did track each other as shown in Appendix A.
Comparisons were also performed based on the Mean Time Between Errors and Mean Error Durations at
the pins. The Mean Time Between Errors is obtained by computing the average time interval between
two consecutive errors on the pin. The Mean Error Durations indicates the holding time of the error at the

specified pins. The MED is calculated by averaging the time between the instance of error occurrence

16

and disappearance. By examining these values, the impact of an internal fauit on the external environ-
ment can be estimated. The Mean Time Between Errors and the Mean Error Durations on the pins for

both simulations are shown in Table 4.

TABLE 4: MTBE and MED for Stuck-at and Device Faults

STUCK-AT DEVICE
MTBE | MED j| MTBE | MED
PIN1 345.1 45.9 3038 | 47.8
PIN2 2410 | 266 189.1 272
PIN3 2180 | 57.1 189.6 | S8.2
PIN4 4083 | 408 || 296.7 | 464
PINS 215.0 | 319 1856 | 41.6

PIN NUM.

PING 465.6 16.9 369.4 17.5
PIN7 184.7 67.1 147.6 67.7
PIN8 166.8 62.5 141.1 66.9

PIN9 169.8 59.8 1444 | 61.7
PIN10 176.6 | 60.2 148.1 60.6

The first column shows the pin numbers. The next two columns are the MTBE and the MED for
the gate-level simulation and the device-level simulation. The MTBEs for the stuck-at faults are longer,
and the MEDs for the stuck-at faults are shorter than those for the device faults. Typically, the MTBEs
of Pin 4 and Pin 6 for the stuck-at faults were 100 time steps longer than those for the device faults. The
shorter the MTBE, the more likely it was that the error would propagate although it was also easier to
detect the error outside the chip. The shorter the MED, the less likely it was that the error would pro-
pagate outside the chip. Note that the MTBE for the stuck-at faults was larger (72% - 88%) and the
MED was shorter (1% - 30%) than the corresponding values for device faults. Thus, stuck-at faults were
less likely to propagate outside the chip. Since device faults had the longer duration, they were more
likely to exert an impact external to the chip. Thus, assuming a stuck-at model for failures may underes-

timate the fault propagation characteristics external to the chip.

aE - EE

17

In summary, results of the measurements show that 5.1% of the device faults are detected within
the injected unit, and 20.9% of faults are detected outside the unit (which include 12.7% at the output
pins) and 74% remain undetected. In the stuck-at case, 1.5% of faults are detected within the unit, and
41.8% of faults are seen outside the unit (26.9% are at the output pins), and 56.7% are not detected.
Results show that there is little correspondence between stuck-at and device-level fault models as long as
error activity or detection within a functional unit is concerned. In so far as error activity outside the
injected unit and at the output pins are concemned, the stuck-at and device models closely track each other
although the stuck-at model overestimates by approximately one hundred percent fault propagation of the
chip. At the pin level, although the percentages of errors for stuck-at and device faults do track each
other, an evaluation of the Mean Error Durations and the Mean Time Between Error shows that the
stuck-at model will significantly underestimate (by 62%) the impact of an internal chip fault on the exter-

nal environment.

The comparisons between the gate-level simulation and the device-level simulation based on the
instruction/microinstruction executed are shown in Appendix B. Since it is clear that the device-level
injection is more accurate and realistic, we consider only the device-level fault in the remainder of this

study.

18

CHAPTER §

EFFECT OF FAULT PLACEMENT

This section discusses the effect of fault location on propagation through the chip. Recall that Fig-
ure 2 shows the percentages of the faults which propagate outside the injected unit. For example, among
all the faults injected in the ALU unit, only 25.8% of those faults were detected outside the ALU. The
functional unit with the highest percentage of external propagation was the RAM Control (44.8%), and
the units with the lowest level of propagation were the output units which include the Output and the
Output Select. The results for the RAM Control are not surprising because this unit has a large fan-in
and fan-out (it controls_ many input and output paths around the RAM unit), and is the most complex unit
in the system. Therefore, more faults in this unit tend to propagate to other functional units. The results
also show that the Output Select and the Output units are least likely to propagate to other functional
units. This result is intuitive since there is little feedback from these units to the other units. However,
faults in these units will almost certainly affect the output pins as will be shown in Chapter 6. A rela-
tively high percentage of faults in the microinstruction decode units (Source Control, ALU Control and
Destination Control) tend to travel out of that unit. These results also seem reasonable because the
microinstruction decode units are extremely important in the correct operation of the processor. Further,
the faults in the ALU behave somewhat similarly to those in the MUX because the MUX outputs feed
directly into the ALU. A very low percentage of faults in the RAM Shift and the Q Shift units propagate
outside. One explanation is that the RAM Shift and Q Shift units are used primarily for the multiplica-
tion and division instructions. These instructions are not highly used in the self-test program employed in

this study.

-—-\‘——_—-_—__‘--_-

19

Given that a fault propagates out of the injected units, the probability that the injected fault affects
the other units is shown in Table 5. The first column shows the units in which the faults were injected.
The remaining columns show the other units in which the faults may be detected. Each entry shows the

probability with which the injected fault affects each unit.

By examining Figure 2 and Table 5 together, we can get a clear picture of fault propagation in the
chip. For example, in the ALU 25.8% of injected faults propagated outside of the ALU (refer to Fig. 2),
and, as shown in Table 5, 32.5% of these faults affected the RAM unit, and 90% affected the Q-Register
and so on. As expected, the ALU is strongly affected by faults in other units. The converse, however, is
not true, e.g., faults in the ALU do not affect the microinstruction decode units (Source Control, ALU
Control, and Destination Control). They do, however, propagate to the output. Although the Output
Select is not very likely to impact the other units (Fig. 2), when it does, several other units are uniformly
affected. As explaine& earlier, this is most likely due to the fact that the Output Select unit has several
data paths which feed back to many other functional units. Because the ALU and MUX are closely
located, the faults from these units act similarly. Faults in the microinstruﬁon decode units (Source
Control, ALU Control and Destination Control) have a high probability of fault propagation, and given

that propagation occurs the other units are uniformly affected. The table also shows the Output unit is

severely affected by faults originating in most of the functional units. Thus, given that a fault propagates

outside the injected unit, it is very likely to affect the output pins.

20

- |80 | e8co | sm0 880 | 880 8180 | 860 | 68c0 | 880 | fico XOW
S0 | -~ | szzo | o060 0060 | 0060 | 0560 | stzo | szzo | oo6o | zo mv
o1 o1 | - ol ol o1_|_ ol 0 0 | 01 | 0050 | inodsaa
YWro | w0 | L100 - Y0 | w0 [vpy0 | 1510 | 8,20 | vmv0 | 2690 | 1NOD Wva
01] ol 0 ol - o1 | ol 0 0 [o1 | ot] 1answva
o1 o1 o ot 01 . O1] Or | o1 | o1 | or] 7&si0
050 | 0050 0 [o570 0sT0 | oszo | - 0 0 [0szo | 0sz0 | 1ndaino
00s0 | 01] oszo 01 01 0t [ot ~"Toszo [o1 |oszo | noony
0050 | 01 0 o1 o1 o1_| o1 0o | - 01 | 010 | INODS
8LLO | 8LL0 0 [8o 8L | 8LL0 | sto| o o | - 0 1amso
SL80 | 180 | 0520 | im0 S£80 | <180 | 1y0 | cico | ooso | sigo | = nva
XOW | TV] INO'SA | IND'WVA | dHS'WYY | 15200 | 100 | omv | INos | amsD | mve Do

PARYJy situn jo Anpqeqoig ¢ 379VL

21

In summary, the results demonstrate that many faults, about 25% of the injected faults in the ALU
and the MUX, tend to propagate and also that these units are strongly affected by faults in other units.
(Around 60% of faults in other units affected these units.) Faults from the microinstruction decode units
have uniform impact on the system overall. Given that faults propagate outside the injected unit, the

faults severely affect the Qutput unit, i.e., the output pins are most likely to be affected by the faults.

5.1. Comparison of Fault Distributions of Different Material Failures

Figure 3 shows the frequency distributions of faults occurring based on the different materials
(oxide or metal). The vertical axis represents the frequencies of faults detected at a specific time over the
entire simulation. The horizontal axis has the time steps in one clock cycle (with one clock cycle consist-
ing of 70 time steps). In the plot, the solid line depicts the overall fault distribution, the dashed line is the
distribution of the oxicie fault, and the dotted line represents the distribution of the metal fault. The plot
is generated by overlaying the 50 clock cycles in the sample and plotting the frequency of upset in the
system for each of the 70 time steps. Mostly, there was little activity beyond 30 and below 5 time steps

per clock cycle.

Because the device-level fault injection was performed in this study, two materials.e.g., the oxide
and the metal, were invoived in the fault injectio;l. In the previous chapter, 68% of the faults were
injected into the oxide, and the remaining 32% of the faults were injected into the metal. Numerically,
more than twice the fault injections were performed in the oxide material. In Figure 3, the fault distribu-
tion of the oxide is closer to the overall distribution than that of the metal. Surprisingly, the frequency
distribution of the oxide was not twice that of the metal as we would have expected. From this result it

appears that faults in the metal can more actively affect the system than faults in the oxide material.

22
1004 ¢¥ A Oxide
——— Overall
.......... Metal
Freq of
Faults
Detected
50 ~
0 : 1 | i I]
0 10 20 30 40 50

Time step in clock cycle

Figure 3: Activity Comparisons Bctween Matcrials

23

Table 6 shows the impact of the metal and oxide faults as a functions of the unit into which the

fault was injected.

TABLE 6: The Effect of Fault in Oxide and Metal

SEC Fault in Metal | Fault in Oxide
RAM 464 % 58.4 %
Q SHFT 66.7 % 59.6 %
S CONT 24.6 % 25.5 %
ALU CON 18.8 % 19.7 %
OUTPUT 63.8 % . 63.5%
OUT SEL 63.8 % 59.8 %
RAM SHFT 63.8 % 59.8 %
RAM CONT 63.8 % 59.8 %
DES CONT 7.2 % 13.9 %
ALU 65.2 % 63.5 %
MUX 40.6 % 59.1 %

The first column shows the unit into which fault injection occurred. The percentages of the
injected faults which resulted in some error activity are shown in the next columns. These two columns
of numbers show a distinct similarity. Even though fewer faults were injected into the metal, the percen-
tages of faults that affected the unit are about same; consequently, we can conclude that the faults in the

metal actively affected the units.

CHARACTERIZATION OF ERRORS ON OUTPUT PINS

CHAPTER 6

24

Previous sections of this paper have defined and measured fault propagation throughout the AMD

2901 bit slice processor. In this section, characteristics of the error activity at the output pins are studied.

Our previous results show that the output unit is very sensitive to the location of the fault within the chip.

The output pins are also the place at which a fault can affect the external environment. Therefore,

appropriate measurements and accurate evaluations of the output pins are absolutely necessary for

evaluating the performance of a system. The AMD 2901 has 40 I/O pins around the body of the chip.

Of these pins, ten are used for the output lines of the chip, and the others are used for inputs, power lines,

tri-states, etc. Because individual pin data are obtained from the simulation and analyzed for the charac-

teristics of each pin, the functions of each pin are worth considering carefully. Instead of using real pin

numbers, ten numbers from one to ten are used for convenience. Table 7 shows the names of ten pins

and short descriptions of them.

TABLE 7: Pins of AMD 2901

PIN NUM | PIN NAME DESCRIPTION
PIN1 GCN4CPUIC32 Carry out
PIN2 GF3BCPUIC32 Bit7 ALU out
PIN3 GFEOCPUIC32 ALU Zero out
PIN4 GGBARCPUIC32 | Carry prop.(P)
PINS GOVRCPUIC32 | Overflow output
PIN6 GPBARCPUIC32 Carry gen.(G)
PIN7 TSYOCPUIC32 YOO output
PINS TSY1CPUIC32 Y01 output
PIN9 TSY2CPUIC32 Y02 output
PIN10 TSY3CPUIC32 Y03 output

25

The first column contains the pin numbers used in this study, and the second column shows the pin
names which are used for the simulation. Pin 1, Pin 4 and Pin 6 are all used for the carryouts of the
arithmetic functional result from the ALU. The differences are that Pin 1 is a carryout line of the usual
full adder, and Pin 4 and Pin 6 are the carry propagate and generate outputs of the internal ALU (used in
the carry lookaheéd). Pin 2 is the most significant ALU output bit. Pin 3 indicates whether the result of
an ALU operation is zero or not. The overflow signal is shown at Pin 5. Pins 7,8,9 and 10 are the four

outputs of the ALU or the data of the register stack, as determined by the destination decoder{18].

6.1. Probability of Pin Errors

As shown in Chapter 4, on the average, 12.7% of the device-level faults are detected at the output
pins (while 5.1% are detected within the unit and 20.9% are outside the unit). Table 8 shows the impact
of faults in the specified functional units on the output pins. The first column shows the units in which
the faults were injected. The remaining columns identify the specific output pins in which the faults may

be detected. Each entry shows the probability with which an injected fault affects the specified pin.

26

TABLE 8: Probability of Pin Errors

;:uclt';: PIN1 | PIN2 | PIN3 | PIN4 | PINS | PIN6 | PIN7 | PIN8 | PIN9 | PIN10
e

RAM 0.650 | 0.875 | 0.875 | 0.700 | 0.700 | 0.650 | 0.875 | 0.875 | 0.600 | 0.600
Q SHFT 0.400 | 0.500 { 0.700 | 0.500 | 0.400 [0.700 | 0.500 | 0.500 | 0.400 | 0.500
S CONT 0 0 0 0 0 0 0 0 0 0

ALU CON 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
OUT SEL 0.950 | 0.950 | 0.950 | 0.950 { 0.950 | 0.950 | 0.950 { 0.950 | 0.950 | 1.0
RAM SHFT || 0.800 | 0.500 | 1.0 0.800 | 0.800 | 0.800 | 0.750 { 0.750 | 0.600 | 0.500
RAM CONT || 0411 | 0436 | 0.444 | 0436 | 0.410 | 0.205 | 0.410 | 0410 [0423 | 0444

DES CONT | 0 0 0 0 0 0 0 0 0 0
ALU 0.700 | 0.800 | 0.700 | 0.750 | 0.700 | 0.850 | 0.750 { 0.750 | 0.650 | 0.600
MUX 0.556 | 0.611 | 0.778 | 0.870 | 0.556 | 0.444 | 0.611 | 0.611 | 0.722 | 0.556

Recall that in the previous chapter the faults in most units have a high probability of affecting the
Output unit (which includes the output pins). Table 8 not only confirms this observation but also shows
that the impact is rathe;r uniform across all output pins. Different units, however, affect the pins to vary-
ing degrees. This is due to the fact that the characteristics of functional units differ due to the combined
effect resulting from their different functional operations, locations and structural complexities. For
example while 100% of the faults in the ALU Control affect all pins, faults in the Source and Destination
Control units do not affect the output pins at all. As expected, most of the faults in the Output Select
readily affect all pins. The results in this table al'so show that each unit has a distinct probability of
affecting the output pins. This result is significant for integrated system testing because it suggests that

by injecting pin errors with the measured distinct probabilities, we can emulate within-chip faults.

6.2. Mean Time Between Errors (MTBE) and Mean Error Durations (MED)

Recall that in Chapter 4 we calculated the MTBE and the MED of pin errors. Clearly, the longer
the MTBE, the less the impact of the error on the external environment. It also means, however, that it is
harder to detect the errors. Similarly, the shorter the error duration, the less the impact on the external to
the chip. Tables 9 and 10 show the MTBE and the MED for the different functional units into which

faults are injected.

TABLE 9: Mean Time Between Errors

;:“c‘!::‘:l PINI | PIN2 | PIN3 | PIN4 | PINS | PIN6 | PIN7 | PINS | PIN9 | PIN10
—— — o
RAM | 6319 | 5860 | 5029 | .] 1360 | 1113 | 1358 | 4918
Q SHFT | 5740 | 5740 | . . T 4783 | . | 115

S CONT

ALU CON 281.3 | 137.1 | 156.7 | 205.5 | 1704 | 305.8 | 159.6 | 146.3 | 1463 | 143.6
OUTPUT 2114 | 121.7 | 113.5 | 1869 | 144.2 | 2989 | 102.2 | 98.1 | 108.0 | 103.7
OUT SEL 217.9 | 1339 | 1284 | 1924 | 150.7.} 302.1 { 116.6 | 1029 | 111.7 | 117.2

RAM SHFT . 816.0 | 816.0 816.0 | 816.0
RAM CONT || 304.8 | 205.5 | 163.8 | 278.6 | 1564 | 317.8 | 1514 | 1348 | 161.6 | 1549
DES CONT

ALU 356.2 | 166.9 | 177.0 | 3453 | 203.8 | 367.2 | 122.9 | 141.5 | 128.5 | 120.6
MUX 347.4 | 180.6 | 2014 | 3299 | 2064 | 505.8 | 164.2 | 1588 | 144.1 | 1305
in chip 303.8 | 189.1 | 189.6 { 296.7 T=185.6 3694 | 147.6 | 141.1 | 1444 | 148.1

In Table 9, the first column shows the units in which the fault injections were initiated. The figures
in the next ten columns are the MTBE on each output pin. The dots in the table indicate that computing
values on that unit are not possible due to insufficient data. For instance, if there is only one error

detected during the simulation, it is impossible to obtain the time interval to the next error.

Referring to the table, faults in the ALU and the MUX resulted in very similar distributions of the

MTBE across all the output pins as discussed in the previous chapter. The shortest MTBEs are shown

when faults are in output units, i.e., there is high external detectability of these fault. Faults in the Q-
Shift and the Ram Shift units have long MTBE to the pins. This is due to low utilization of these units
resulting in fewer faults propagating to the pins. Since Pins 7, 8, 9 and 10 are fed out from.the same unit
and operated by the same functions, the values of the MTBE of these pins are almost identical. Pins for
carryout (Pin 1, Pin 4 and Pin 6) had relatively long MTBEs. This is due to the fact that the carryout
operations are used only for the event of generating carries during or after arithmetic operation in the

ALU. These pins, therefore, are not utilized as often as the other pins.

Table 10 shows the Mean Error Durations. The units of fault injection are shown in the first

column. The rest of the columns show the MED for the individual pins. The dots in the entries indicate

28

that the data are not sufficient to perform proper computation for the comresponding unit.

TABLE 10: Mean Error Durations

;:‘;’;: PIN1 | PIN2 | PIN3 | PIN4 | PINS | PING | PIN7 | PINS | PIN9 | PIN10
RAM — | 843.] 737 | 862 | . — | 383 | 7L.1 | 200 | 632
Q SHFT . 18 | 16 | .) . 7] . . 2.0
-['s CONT

ALU CON 367 | 475 | 432 | 456 | 698 | 186 | 565 | 435 | 488 494
OUTPUT 581 | 887 | 783 | 916 | 718 | 23.2 | 89.0 | 81.6 | 833 89.1
OUT SEL 562 | 85.7 | 742 | 885 | 700 [217 | 879 [79.8 | 815 88.7

RAM SHFT . 68.3 | 335 68.3 68.3
RAM CONT || 465 | 23.7 | 465 | 466 | 304 | 16.7 | 584 | 403 | 49.2 45.4
DES CONT

ALU 528 | 29.8 [573 | 441 | 338 | 193 { 741 | 616 | 68.2 70.9
MUX 496 | 152 | 821 | 429 | 352 133 | 851 | 771 81.3 86.5
in chip 478 | 272 | 582 | 464 | 416 | 175 | 677 | 669 | 61.7 60.6

By examining values of the MTBE and the MED together, the impact of the output pins is more
clearly shown than by either approach separately. From Table 10, faults in the Q-Shift unit have the
shortest duration. Recall that they also have a long MTBE. Thus, these faults are likely to be hard to
detect external to the chip. As expected, the faults in the output units have a long duration. Thus, both
from the error frequency and error duration perspectives these faults are easily detectable. Faults in the
Q-Shift and the Ram Shift have behaved very similarly during their propagation in the system due to their
functional similarity. The MEDs of these units, however, exhibited large differences. One possible
explanétion for this phenomenon is that the time duration of holding a error on the pin is determined not
only by the functional operation of the unit, but also determined by multiple effects of the data pro-
pagated from several different signal paths. Because their effects by functional operation or the geograph-
ical location are almost identical, Pins 7, 8, 9, and 10 have similar MEDs. These pins tend to have longer
errors than any of the other pins. The shortest MED is shown on Pin 6, showing that this pin clears

errors very quickly.

29

Table 9 and Table 10 also show that Pin 6 (carry generate) is least affected by the faults regardless
of the injected unit (the longest MTBE and the shortest MED). The impact of faults on the data pins
(Pins 7, 8, 9 and 10) is considerable as shown by the short MTBE and long MED. Faults in the output
units severely affect the output pins. Thus, data faults are expected to be easily detected outside while

carry faults appear to be more insidious.

6.3. Near-Coincident Errors

It is well known that fault tolerant systems are highly vulnerable to near-coincident faults 19, 20].
In this section we investigate the likelihood of near coincident errors at the output pins resulting from an
injected device fault. Generally, an injected fault may sensitize many other data paths simultaneously
during the propagation. Additionally, the output pins may have multiple errors at the same time or in a
short span of time due to a propagated fault. Near-coincident errors are defined as the errors which are
observed within a short time span. In order to properly measure the number of near-coincident errors, an
appropriate size of time window is chosen; then, the window is moved over the total simulation time.
Each time, the number of errors discovered within each time window is observed and recorded as near-
coincident errors. In this study, the number and probability of near-coincident errors was averaged over

the entire simulation measurement according to given window size.

Figure 4 shows the effect of varying the time-window size on the mean number of near-coincident
errors. As expected the mean number of near-coincident errors increases steadily as a function of the
window size. The rate of increase in the mean number of near-coincident errors is seen to be lower both
for large (more than 2700 time steps) and medium (500-1300 time steps) window sizes. The reason for
this finding is that for the smaller window size, fewer errors are detected until the window size is large
enough to hdld these errors actively. For the larger window sizes, since a large number of faults have

already been observed, the results are not greatly changed by further increasing the size of the window.

30

6 -

Mean _

Number of
Coincident Errors
2
Y | | | T 1 1]
4} 500 1000 1500 2000 2500 3000 3500

Window Size (time steps)

Figure 4: Mean Number of Coincident Errors

31

Figure 5 shows the probability of near-coincident errors. The probability is obtained from the ratio
of the total number of errors occurring in that time window to the total number of errors injected. The
probability increased rapidly up to a window size of 1700 time steps as a function of the window size.

The rate of increase, however, is much less for a window size greater than 1700 time steps.

From a practical viewpoint, however, it can be seen that given a fault, there is a relatively high
likelihood of encountering two output pin errors with less than seven clock cycles (500 time steps). This
is explicitly shown in Fig. 5 where the probability of near-coincident errors is plotted as a function of
window size. The figure also shows that, given a fault, there is approximately a 15 percent chance of a

multiple error with 7 clock cycles.

32

0.25

0.2 4 /

0.15 —

Probability of
Coincident Errors

0.1 4

0.05 -

i I] i !
0 500 1000 1500 2000 2500 3000

Window Size (time steps)

Figure 5: Probability of Near-Coincident Errors

3500

33

CHAPTER 7

INSTRUCTION/MICROINSTRUCTION ANALYSIS

Fault propagation in the chip is highly dependent upon the assembly-level instruction and microin-
struction under execution. That is to say, that fault propagation is influenced by not only the amount of
nonfaulted gate activity but also by the interaction between gate activity and type of instruction. In a pre-
vious work [11], error propagation influenced by similar and dissimilar instructions was studied. The
work also examined the influence of the type of microinstruction executed on error propagation. In this
study, analysis for the device-level simulation was performed based on the instruction/microinstruction

executed.

Figure 6 shows the total gate activity as a function of the time (in clock cycles) for a device-level
fault. The vertical axis is the sum of the gate activities over all the injected faults. The horizontal axis
indicates the time in clock cycles. The instruction executed is also labeled across tl’_ne horizontal axis. In
the graph, the peak gate activity occurs during an instruction prefetch or some other memory access
because-of the concurrent activity in the processor. The Store (sto), the Load (ldm) and the Subtract
instruction (pre-sub) show similarities in their gate activities. Low gate activities are seen when the jump
instruction (ju-ind) is executed. The instruction for store muitiple registers from memory (stm) shows the

highest gate activity because of the high frequency of register transfers.

34
power*;on : : : : :

! ju-ind: sto : pre-subr: ldm ! pre-subr: stm
100000 -
80000 —

Gate

Activity 60000 —
40000 —
20000

I ! I [I | I] { S

0 5 10 15 20 25 30 35 40 45

(¥
o

Clock cycle
(1 clock cycle = 70 time steps)

Figure 6: Gate Activity for Device Level Fault

35

Table 11 shows the error probabilities by different instruction types. These results are the averages
over the entire fault set. The highest probability of detection is shown in jump instruction and the lowest
is in store instruction. Referring to Fig 6, it appears that there is little relationship between the amount of
gate activity and the probability of error occurrence. For example, while the number of gate activity is
the highest during the stm instruction execution and the lowest .during the jump instruction, the stm
instruction has the lowest error probability and the jump instruction has the highest. The reason for the
differences in the measured error probabilities between the different instruction types can be explained by

investigating the relationship between the error activity and the microinstructions.

TABLE 11: Probability of Fault Detection for Instruction Executed

INSTRUCTION | ERROR PROB.
ju-ind 0.26
sto 0.14
pro-subr 0.21
Idm 0.16
stm 0.19

Toward this end, these microinstructions were classified according to the type of activity contained
in each microinstruction. The classifications include the register transfer, the memory access, logic com-
putation, arithmetic computation and conditional/unconditional branch. Due to parallelism, one microin-
struction may involve more than one classified function. The fault activity determined at the microin-
struction level can be used to explain the fault propagation at the instruction level, because the microin-
struction is the building block of the assembly instruction. Table 12 shows the probabilities of fault
detection in the device-level simulation according to the microinstruction executed. The function of each

bit of microcode is indicated as follows:

36

if bit4 = 1, then a register transfer,

if bit3 = 1, then a memory access,

if bit2 = 1, then a logical computation,

if bitl = 1, then a arithmetic computation,
if bit0 = 1, then a conditional branch.

TABLE 12: Probability of Fault Detection for Microinstruction

MICRO- PROB. OF DET.
INSTRUCTION | in DEVICE LEVEL
00000 0.11
00001 0.04
01000 0.18
01001 0.21
10000 0.18
10001 0.23
11000 0.17
11001 0.20

As shown in the table the probabilities of detecting a fault when a conditional branch operation
(bit0=1) is involved, is generally increased. As expected, the microinstruction for branch operation that is
used for jump instruction has high probability of detection, while the microinstruction for store and load

instruction, which include the register transfer operations, has low probability of detection.

37

CHAPTER 8

CONCLUSIONS

This thesis has described a systematic experimental study of fault propagation in the Bendix BDX-
930, a digital avio;lic miniprocessor. Error activity was investigated by comparing the gold (unfaulted)
simulation run with each faulted simulation run. The simulations were performed only on the bit-slice
processor, AMD 2901. In the simulations, fault propagation data were collected at device and gate-levels,
as well as at the output pins. The results provided by these data allowed us to not only analyze the
dependency of error propagation on the location of the fault and by the type of instruction and microin-
structions executed, bqt also to compare the accuracy of the stuck-at fault model with the more realistic

physical failure model for permanent faults.

Results show that assuming a stuck-at model can overestimate the probability of fault propagation
to the output pins by over one hundred percent. The Mean Time Between Errors for the stuck-at faults
were longer, and the Mean Error Durations shorter, than those for the device faults. Thus, assuming a
stuck-at model for physical failures may overestimate the fault propagation characteristics within the chip

and underestimate the impact on the external to the chip.

Measurement of error activity at the output pins showed that faults in different functional units
affect the output pins to varying degrees and that each unit has a distinct probability of affecting the out-
put pins. This result suggests that by injecting pin errors with the measured distinct probabilities we can
easily emulate with-in chip faults for integrated system testing.

The Mean Time Between Errors and the Mean Error Duration at the output pins were also
evaluated. Among the ten output pins, the carry generate pin had the longest MTBE and the shortest
MED. The Data pins (Pins 7, 8, 9 and 10) had relatively short time between errors and relatively long

error durations.

38

Thus, the current work has shown that a wide variety of fault propagation behavior can result from
device failures. Further research is in progress to use the results of such analyses in identifying the
"weak" links in a system, from a fault tolerance viewpoint, in the design stage itself, so as to make design

improvements in a cost-effective manner.

39
APPENDIX A
COMPARISONS BETWEEN STUCK-AT AND DEVICE
A.1. Comparison of Percentage of Fault Detected
RAM Y S5i1
Q SHIFT %75
. S CONT 53.7
ALU CONT LY L LT /Z/g/////////// 60.3
OUTPUT
OUT SEL B Stuck-at
: Device
RAM SHIFT B &5
i
RaM CONT 05 s 7
i
DES CONT 5.8
ALU % 773 56.6
i
MUX e 773 5.2
= v Y T t v v v =
0 20 40 60 80 100

Figure A.l: Comparison of Percentages of Faults Detected

40
A.2. Comparison of Percentage of Faults Detected at Output Pins
' f
RAM 7/ La.s
8 5
QSHIFT 0224 116
7 0.0
S CONT 23 9.8
ALU CONT . 22,308 :]
L AL LT 2 ot L L il r i TP T 7 7 o) B8
outpPuT B1l,
OUT SEL 9.1 STUCK-AT
DEVICE
RAM SHIFT = 1611
RAM CONT 193
Ll 2P 77 41.6
100
DES CONT 3
ALU 219
PIISPY //‘//////////’////////// Ll 4 8
MUX 72 29,4 4.
T Y T v t v i Y 1 Y T v v M
0 10 20 30 40 . 50 60 70 80

Figure A.2: Comparison of Percentages of Faults Detected at Output Pins

A3. Comparison of Propagation Factor at Output Pins

TABLE A.1: The Propagation Factors to Output Pins

faulted Pro.Factor | Pro.Factor
Section for Stuck-at | for Device
RAM 4.8 5.9
Q SHFT 6.5 7.2
S CONT 1.8 2.7
ALU CON 9.3 8.6
OUTPUT 9.1 10.3
QUT SEL 9.9 10.5
RAM SHFT 4.1 8.2
RAM CONT 2.2 4.9
DES CONT 1.7 2.1
ALU 8.0 9.1
MUX 7.2 8.3

41

Ve e e e

. S .
T < Lo TV I P
e Pyl 0 gt

APPENDIX B

INSTRUCTION/MICROINSTRUCTION COMPARISONS

B.1. Comparison of Gate Activity

power:on : : : : : |
1 ju-ind: sto ! pre-subr: ldm ! pre-subr: stm
. N 1
. : : : : : ,
100000 =
1 U
30000 ¥
U
k—
Gate)
Activity w/ ! !
Device level 60000 A :
Fault)
] p—
' 1
0000 — \ !
‘ 1
; :
20000 — B S\ A stuck-at v
\ device :
; ' I
— e !
- . 1 T i T T T 1
0 5 10 15 20 25 30 s 40 45 50

Clock cycle

Figure B.1: Comparison between Device and Gate Level Fauits

42

120000 Gate
Activity wr
Gate level
Fault

:

40000

B.2. Comparison of Error Probability based on Instruction/microinstruction

TABLE B.1: Comparison of Error Probability for Instructions

PROB. OF DET. PROB. OF DET.
INSTRUCTION in GATE LEVEL | in DEVICE LEVEL
ju-ind 0.33 0.26
sto 0.19 0.14
pro-subr 0.25 0.21
Idm 022 0.16
stm 0.24 0.19

TABLE B.2: Comparison of Error Probability for Microinstructions

PROB. OF DET. | PROB. OF DET.

INSTRUCTION | . GATE LEVEL | in DEVICE LEVEL
power-on 0.15 0.11
ju-ind 0.0 0.04
sto 023 0.18
pro-subr 0.29 0.21
Idm 0.25 0.18
pre-subr 0.32 0.23
stm 022 0.17

43

(11

(2

(3]

[4]

(5]

(6]

N

(8]

(91

(10]

(11
(12)

(13}

(14]

(15]

(16]

(17

(18]

REFERENCES

A. Vladimirescu, A.R. Newton, and D.O. Pederson, SPICE Version 2G.1 User's Guide. Berkeley,
CA: EECS Dept., UC Berkeley, 1980.

R.XK. Iyer and D.J. Rossetti, A Statistical Load Dependency of CPU Errors at SLAC. Santa
Monica, California: Digest FTCS-12, June 1982.

R.XK. Iyer, DJ. Rossetti, and M.C. Hsueh, ‘‘Computer System Reliability and System Activity:
Measurement and Modeling,”’ ACM Trans. on Comp. Sys., August 1986.

X. Castillo and D.P. Siewiorek, Workload, Performance and Reliability of Digital Computing
Systems. Portland, Maine: Digest FTCS-11, June 1981.

K.G. Shin, ‘‘Measurements of Fault Latency: Methodology and Experimental Results,”” Tech.
Report CRL-TR-45-84, Computing Research Lab, Univ. of Mich., 1984.

J.G. McGough and FL. Swern, ‘‘Measurement of Fault Latency in a Digital Avionic Mini
Proc.(Parts I & II),”" NASA Contractor 3651, NASA Langley Research Center, Oct. 1981, Jan.
1983.

J.G. McGough, F.L. Swern, and S. Bavuso, ‘‘New results in fault latency modeling,”” Eascon, vol.
b, 1983.

J.H. Lala, ‘‘Fault Detection, Isolation, and Reconfiguration in FTMP: Methods and Experimental
Results,”* Proc. 5th DASC, 1983.

R. Chillarege and R.K. Iyer, ‘‘Measurement-Based Analysis of Error Latency,”” IEEE Trans.
Comp., vol. C-36 , May 1987.

R. Chillarege, ‘*Fault and Error Latency Under Real Workload-An Experimental Study,’”” Ph.D.
dissertation, Electrical and Computer Engineering, University of Ilinois at Urbana-Champaign,
1986.

DL. Lomelino, *“Error Propagation in a Digital Avionic Mini Processor,”” M.S. Thesis, ECE
Dept. Univ. of Illinois at Urbana-Champaign, 1986.

J. Wensley et al., *‘SIFT: Design and Analysis of a Fault Tolerant Computer for Aircraft
Control,’” Proc. IEEE, vol. 66, pp. 1240-1254, October 1978.

P. Forman and K. Moses, *‘SIFT: Multiprocessor Architecture for Software Implemented Fault

. Tolerance Flight Control and Avionics Computers,’” Third Digital Avionics Systems Conference,

pp- 325-329, November 1979.

D. Migneault, ‘“The Diagnostic Emulation Technique in the Airlab,”’ Internal Report, NASA
Langley Research Center, 198S.

R.L. Wadsack, ‘‘Fault modeling and logic simulation of CMOS and NMOS integrated circuits,’’
The Bell Sys. Tech. J., vol. 57, May 1978,

J.P. Shen, W. Maly, and F.J. Ferguson, *‘Inductive Fault Analysis of nMOS and CMOS Integrated
Circuits,”’ Research Report CMUCAD-85-51, ECE Dept. CMU, Pittsburgh, PA, August 1985,
Digital Equipment Corporation, VAX/VMS Primer. Maynard, MA: Digital Equipment
Corporation, May 1982,

Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Book. Sunnyvale, CA:
Advanced Micro Devices, 1981.

(191

(20]

45

J. McGough, “‘Effects of near-coincident faults in multiprocessor systems,’’ Proc. IEEE/AIAA
Fifth Digital Avionics Systems Conf., pp. 16.6.1-16.6.7, 1983.

S.G. Mitra, ‘‘Near-Coincident Fault Discovery in a Shared Memory Multiprocessor,”” M.S.
Thesis, University of Illinois at Urbana-Champaign, 1988.

